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Abstract. Interpolators are widely used in image processing because they allow
us to estimate the unknown values of sensor measurements. In this research, we
present a comparison between commonly used interpolators to evaluate how
each affect the behavior of the data, it is studied the problem of interpolation as
a means to infer information at a higher frequency through the mathematical
description an depth image.
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1 Introduction

Image processing and analysis is currently better known and used for various activi-
ties in the world of technology, the type of analysis that is performed and the tech-
niques used are directly linked to the amount of information provided by each image,
as well as what needs to be identified through this one.

This information depends in turn on the sampling frequency of the sensor being
used; a digital image is constituted by a spatial sampling of a set of sensors
represented by a matrix. However, when talking about sampling, the main limitation
observed is the sensor acquisition frequency, which in turn is limited due to the cha-
racteristics of the phenomenon being sampled. In several occasions to compensate for
the limitations above, it is common the use of interpolators, so that we can obtain
more information about the phenomenon being analyzed.

Therefore, when using an interpolator it is expected that the information obtained
through it will be consistent with the data originally acquired, that is, that it does not
deform the nature of the information, since this can directly affect the result of the
analysis performed.

Therefore, in this work, we study the problem of interpolation as a means to infer
information at a higher frequency. We examined how three different types of interpo-
lators affect the data acquired at a certain frequency. We present experiments with
depth images of increased resolution and analyze how much it affects the method of
interpolation used in the original image.
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2 Theoretical Foundation

There is evidence in the literature of different comparatives between interpolators,
however these are based on criteria such as: execution time, precision, clarity of the
image, among others [1], [2]. However, for purposes of this work, what is interesting
is to know how much it affects or not the use of some interpolator to the original dis-
tribution of the depth image.

In this work, three commonly used interpolators are used in image analysis, which
are described below.

2.1 Linear Interpolation

One of the most used interpolators is the linear one described in Eq. (1) due to its
simplicity. It consists in fitting a line to two given points:

9(x) = 7= f(a@) + 2= £ (b). (M)

where g (x) denotes that this is a first-degree interpolation polynomial. To interpolate
an image, the function is first applied to the x-axis and then to the y-axis.

The advantage of using the linear interpolator is that the implementation is simple,
for this reason, the computation time is small compared to other interpolators. Anoth-
er advantage of the linear interpolation is that the results are more accurate with
smaller intervals between the two points. However, in the same way, if the interval is
large, the result is more inaccurate. It should also be considered that if the selected
points do not correspond to a straight line, the calculated values become incorrect.

2.2 Lagrange Interpolation

The Lagrange interpolation polynomial is a reformulation of Newton's polynomial
that avoids the calculation of the divided differences, and is represented by Eq. (2) of
polynomial bases of Lagrange (Eq. 3):

f0) = 2o yili(x). (2)
_ fn xX-x; _ X—Xg X—Xo X—Xg X—xq
l] (x) = l_[l:=0 , iij xj_Xi = x]'—xo . xj_xo xj_xo . x]'—xo. (3)

The Lagrange interpolation grows fast computationally with the increase of the in-
terpolator degree. The polynomial degree varies according to the input points, i.e., if
we remove or add points it is necessary to change the degree of the polynomial.

2.3  Basic Splines (B-Splines)

The purpose of this interpolator is to make the interpolation curve smoother and im-
proving the image edges.
The cubic B-spline function is defined in Eq. (4):
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The three-order B-spline function is as follows:
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The B-spline interpolator has a greater mathematical complexity, because the base
functions do not support an explicit expression and change when adjusting the nodes
vector.

3 Methodology

For this work and because they are analyzing depth images it is decided to choose two
objects that have the following properties.
1. Rigid object of known form, non-deformable.
2. Soft and amorphous object.
This is considered as the most special cases that can be found when acquiring an
image through a ToF camera.

Fig. 1. Objects acquired with the depth sensor

Depth images were acquired with a ToF camera, to reduce the noise generated by
the sensor, 250 depth images were acquired and we averaged to estimate the expected
value of each pixel.

Were implemented and applied the three interpolators to the acquired images
(Linear, Lagrange, and B-spline), increasing the acquisitions two, four, eight and
sixteen times, to analyze the effect of each interpolator and each increase over the
information provided in the original image.

To describe the original image, we calculated the central moments and compared
with the central moments of the interpolated images. The formula of the central mo-
ment of order k is described in Eq. (6):

e = E[(X — E[X])¥]. (6)

ISSN 1870-4069 73 Research in Computing Science 133 (2017)



Beatriz Juarez Arreort(a, Hugo Jiménez Hernandez, Diana Margarita Cérdova Esparza

Fig. 2. Frames acquired by object

Where E is the expectation operator and k is the order of the statistical moment that
is being calculated.

4 Results

In this section, we present the results obtained by applying the three different interpo-
lators on the acquired original image, both qualitative and quantitative:

In the Figure 3 and 4 the interpolation applied to the original images of the plush
doll and the calibration pattern respectively is shown, in both only a fragment of the
image is shown as an example so that the effect of the interpolation can be better ob-
served.

¢)

d)

Fig. 3. (a) Original image (plush doll), (b) Image with Linear Interpolator (plush doll), (c) Im-
age with Lagrange Interpolator (plush doll), (d) Image with B-Spline Interpolator (plush doll)

In tables 1-6 we present the descriptors of the first four central moments to com-

pare the interpolated images with the input image. Row OI represents the information
obtained from the original image, and the subsequent rows represent the central mo-
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ments of the interpolated images by increasing the frequency 2, 4, 8 and 16 times the
original with each interpolator.

¢) ‘ d)
Fig. 4. (a) Original image (pattern depth), (b) Image with Linear Interpolator (pattern depth),

(c) Image with Lagrange Interpolator (pattern depth), (d) Image with B-Spline Interpolator
(pattern depth)

Figures 5,6 and 7 depict visually how the moments of the scaled images vary more

frequently with respect to the original moments of the depth image(plush doll).

Table 1. Linear interpolation (plush doll)

1st M 2nd M 3rd M 4th M
OI | 0.055920057 | 4567.730957 | 106484.9375 76746880
2x | 0.058058724 | 4518.415039 | 111223.5469 | 75409888
4x | 0.291386068 | 4520.250488 111087.3047 | 75139080
8x | 2.15897727 4531.534668 146713.9219 | 76388360
16x | 8.629109383 | 4570.442383 1114.875366 | 72706552
Table 2. B-Spline interpolation (plush doll)
lst M 2nd M 3rd M 4th M
OI | 0.055920057 | 4567.730957 106484.9375 | 76746880
2x | 0.01438925 5114.751465 1607.946045 128895192
4x | 0.210121885 | 5103.547852 | 28430.24414 | 129927656
8x | 2.253632307 | 5101.760254 | 7790.346191 129600160
16x | 7.980696201 5140.467285 149802.7813 132150752
Table 3. Lagrange interpolation (plush doll)
lst M 2nd M 3rd M 4th M
OI | 0.0559200569987 | 4567.73095703125 106484.937500000 76746880
2x | 0.0138180907815 | 5374.58984375000 242783.953125000 261666128
4x ] 0.2379906475543 | 5420.54345703125 230595.296875000 246231024
8x | 2.1160101890564 | 5416.71679687500 186943.125000000 241594672
16x | 8.2407598495483 | 5457.23486328125 352931.562500000 | 250968080
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Fig. 5. Lineal interpolator

In Figure 5 it is observed that the linear interpolator for this type of images, offers
good results, however, when we scale 16x the original data a considerable variation is
observed for the moment 3.
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Fig. 6. B-Spline interpolator

Both the B-Spline interpolator and the Lagrange interpolator, from scaling 2x,
show a noticeable variation with respect to the original data; however, the B-Spline
interpolator as seen in Figure 6 varies more than the Lagrange interpolator Figure 7
for moment 3.

Figures 5, 6 and 7 depict visually how the moments of the scaled images vary more
frequently with respect to the original moments of the depth image(pattern of depth).
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Fig. 7. c¢) Lagrange interpolator
Table 4. Liner interpolation (pattern of depth)
I''M 2"M 3M 4"M
OI | 0.0001281092700 | 60.22936633 569.4663696 11182.77637
2x | 0.0001294422447 | 62.19714737 555.3723755 10825.80664
4x | 0.000847409 63.29848484 524.324462890 | 10410.88477
8x | 0.00371421 65.824699401 | 763.623840332 | 13556.16309
16x | 0.047592497 84.282928466 | 1455.68054199 | 27358.07422
Table 5. B-Spline interpolation (pattern of depth)
1M 2" M 3“M 4" M
OI | 0.0001281092700082 | 60.22936630249 | 569.46636962890 | 11182.7763
2x | 0.0092535801231861 | 3264.8283691406 | 612950.50000000 | 174173216
4x | 0.0305372662842274 | 3582.5812988281 | 626727.62500000 | 171449104
8x | 0.204221203923225 | 3606.1777343750 | 628083.93750000 | 172152064
16x | 3.49978852272034 3622.1728515625 | 588958.06250000 | 163265120
Table 6. Lagrange interpolation (pattern of depth)
Y 2"M 3M 4"M
OI | 0.0000000 | 0.0060229 | 0.0569466 1.1182776
2x | 0.0000000 | 0.0000562 | 0.0175613 6.9509043
4x | 0.0000000 | 0.0000605 | 0.0165664 | 6.1430662
8x | 0.0000000 | 0.0000608 | 0.0164137 | 6.1218336
16x | 0.0000000 | 0.0000609 | 0.0158865 5.9289088
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Fig. 8. Lineal interpolator

10

8
. 6 —@— Original
g 4 2x
£ 2 —e—4x
‘g’n 0 —@— 8x

-2 16x

-4

-6

Fig. 9. B-Spline interpolator
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Fig. 10. Lagrange interpolator
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Fig. 11. Linear Interpolation
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Fig. 12. B-Spline Interpolation
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Fig. 13. Lagrange Interpolation
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5 Conclusions

In this project, we performed a comparison between the variation of the central mo-
ments initials of a depth image against the central moments obtained from a processed
image using three different interpolation methods.

Quantitatively it can be observed that there is variation in the central moments of
the original image given the selected interpolator as seen in Tables 1-6; however, it is
also observed that it depends on the shape of the object being analyzed.

As can be seen in Fig. 5.6 and 7 it can be seen that the linear interpolator is the one
that best fits the original central moments of the image, however, increasing it by 16x
for the moment 3 is considerably different from the original.

As observed both the Lagrange interpolator and the B-Spline interpolator are the
one that presents the greatest variation with respect to the original information as seen
in Figure 6, 7, 9 and 10.

Because of this, the image is scaled with a smaller frequency to be able to visualize
where it begins to move away from the original moments Figure 11, 12, 13, so that
when processing images of depth from ToF sensors, this is taken into consideration.
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