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Abstract. Interpolators are widely used in image processing because they allow 

us to estimate the unknown values of sensor measurements. In this research, we 

present a comparison between commonly used interpolators to evaluate how 

each affect the behavior of the data, it is studied the problem of interpolation as 

a means to infer information at a higher frequency through the mathematical 

description an depth image.  
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1 Introduction  

Image processing and analysis is currently better known and used for various activi-

ties in the world of technology, the type of analysis that is performed and the tech-

niques used are directly linked to the amount of information provided by each image, 

as well as what needs to be identified through this one.  

This information depends in turn on the sampling frequency of the sensor being 

used; a digital image is constituted by a spatial sampling of a set of sensors 

represented by a matrix. However, when talking about sampling, the main limitation 

observed is the sensor acquisition frequency, which in turn is limited due to the cha-

racteristics of the phenomenon being sampled. In several occasions to compensate for 

the limitations above, it is common the use of interpolators, so that we can obtain 

more information about the phenomenon being analyzed.   

Therefore, when using an interpolator it is expected that the information obtained 

through it will be consistent with the data originally acquired, that is, that it does not 

deform the nature of the information, since this can directly affect the result of the 

analysis performed. 

Therefore, in this work, we study the problem of interpolation as a means to infer 

information at a higher frequency. We examined how three different types of interpo-

lators affect the data acquired at a certain frequency. We present experiments with 

depth images of increased resolution and analyze how much it affects the method of 

interpolation used in the original image. 
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2 Theoretical Foundation  

There is evidence in the literature of different comparatives between interpolators, 

however these are based on criteria such as: execution time, precision, clarity of the 

image, among others [1], [2]. However, for purposes of this work, what is interesting 

is to know how much it affects or not the use of some interpolator to the original dis-

tribution of the depth image. 

In this work, three commonly used interpolators are used in image analysis, which 

are described below. 

 

2.1 Linear Interpolation  

One of the most used interpolators is the linear one described in Eq. (1) due to its 

simplicity. It consists in fitting a line to two given points:   

                                     ���� =  ��	
��
 ���� + 	�


��
 ����.        (1) 

where g (x) denotes that this is a first-degree interpolation polynomial. To interpolate 

an image, the function is first applied to the x-axis and then to the y-axis. 

The advantage of using the linear interpolator is that the implementation is simple, 

for this reason, the computation time is small compared to other interpolators. Anoth-

er advantage of the linear interpolation is that the results are more accurate with 

smaller intervals between the two points. However, in the same way, if the interval is 

large, the result is more inaccurate. It should also be considered that if the selected 

points do not correspond to a straight line, the calculated values become incorrect.  

2.2 Lagrange Interpolation  

The Lagrange interpolation polynomial is a reformulation of Newton's polynomial 

that avoids the calculation of the divided differences, and is represented by Eq. (2) of 

polynomial bases of Lagrange (Eq. 3): 
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The Lagrange interpolation grows fast computationally with the increase of the in-

terpolator degree. The polynomial degree varies according to the input points, i.e., if 

we remove or add points it is necessary to change the degree of the polynomial. 

2.3 Basic Splines (B-Splines) 

The purpose of this interpolator is to make the interpolation curve smoother and im-

proving the image edges. 

The cubic B-spline function is defined in Eq. (4):  
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The three-order B-spline function is as follows:
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The B-spline interpolator has a greater mathematical complexity, because the base 

functions do not support an explicit expression and change when adjusting the nodes 

vector. 

3 Methodology 

For this work and because they are analyzing depth images it is decided to choose two 

objects that have the following properties.

1. Rigid object of known form, non

2. Soft and amorphous object.

This is considered as the most special cases that can be found when

image through a ToF camera

Fig. 

Depth images were acquired with a ToF camera, to reduce the noise generated by 

the sensor, 250 depth images were acquired and we averaged to estimate th

value of each pixel. 

Were implemented 

(Linear, Lagrange, and B

sixteen times, to analyze the effect of each interpolator and each increase over the 

information provided in the 

To describe the original image, we calculated the central moments and compared 

with the central moments of the interpolated images. The formula of the central m

ment of order k is described in Eq. (6):
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1  

olator has a greater mathematical complexity, because the base 

functions do not support an explicit expression and change when adjusting the nodes 

Methodology  

For this work and because they are analyzing depth images it is decided to choose two 

objects that have the following properties. 

Rigid object of known form, non-deformable. 

Soft and amorphous object. 

This is considered as the most special cases that can be found when acquiring an 

camera. 

Fig. 1. Objects acquired with the depth sensor 

Depth images were acquired with a ToF camera, to reduce the noise generated by 

the sensor, 250 depth images were acquired and we averaged to estimate the expected 

 and applied the three interpolators to the acquired images 

(Linear, Lagrange, and B-spline), increasing the acquisitions two, four, eight and 

, to analyze the effect of each interpolator and each increase over the 

information provided in the original image. 

describe the original image, we calculated the central moments and compared 

with the central moments of the interpolated images. The formula of the central m

order k is described in Eq. (6): 

                                                  μ� = 34�5 / 3456��6. 

                                           (4) 

1  (5) 

olator has a greater mathematical complexity, because the base 

functions do not support an explicit expression and change when adjusting the nodes 

For this work and because they are analyzing depth images it is decided to choose two 

acquiring an 

 

Depth images were acquired with a ToF camera, to reduce the noise generated by 

e expected 

and applied the three interpolators to the acquired images 

wo, four, eight and 

, to analyze the effect of each interpolator and each increase over the 

describe the original image, we calculated the central moments and compared 

with the central moments of the interpolated images. The formula of the central mo-

(6) 
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Where E is the expectation 

is being calculated.  

4 Results  

In this section, we present t

lators on the acquired original image, both qualitative and quantitative

In the Figure 3 and 4 the interpolation applied to the original images of the plush 

doll and the calibration pattern respectively

image is shown as an example so that the effect of the interpolation can be better o

served. 

 

a) 

c) 

Fig. 3. (a) Original image

age with Lagrange Interpolator

In tables 1-6 we present the descriptors of the first four central moments to co

pare the interpolated images with the input image. Row OI represents the information 

obtained from the original image, and the subsequent rows represent the central m

 

Fig. 2. Frames acquired by object 

expectation operator and k is the order of the statistical moment that 

In this section, we present the results obtained by applying the three different interp

lators on the acquired original image, both qualitative and quantitative: 

In the Figure 3 and 4 the interpolation applied to the original images of the plush 

doll and the calibration pattern respectively is shown, in both only a fragment of the 

image is shown as an example so that the effect of the interpolation can be better o

 
b) 

 

d) 

Original image (plush doll), (b) Image with Linear Interpolator (plush doll

nterpolator (plush doll), (d) Image with B-Spline Interpolator (plush doll

6 we present the descriptors of the first four central moments to co

pare the interpolated images with the input image. Row OI represents the information 

ained from the original image, and the subsequent rows represent the central m

operator and k is the order of the statistical moment that 

ults obtained by applying the three different interpo-

In the Figure 3 and 4 the interpolation applied to the original images of the plush 

, in both only a fragment of the 

image is shown as an example so that the effect of the interpolation can be better ob-

 

 

plush doll), (c) Im-

plush doll) 

6 we present the descriptors of the first four central moments to com-

pare the interpolated images with the input image. Row OI represents the information 

ained from the original image, and the subsequent rows represent the central mo-
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ments of the interpolated images by increasing the frequency 2,

original with each interpolator.

 

a) 

 

c) 

Fig. 4. (a) Original image

(c) Image with Lagrange 

(pattern depth) 

Figures 5,6 and 7 depict visually how the moments of the scaled images vary more 

frequently with respect to the original moments of the depth image(plush doll).

 

 1
st
 M

OI 0.055920057

2x 0.058058724

4x 0.291386068

8x 2.15897727

16x 8.629109383

 

 1
st
 M

OI 0.055920057

2x 0.01438925

4x 0.210121885

8x 2.253632307

16x 7.980696201

 1
st
 M 

OI 0.0559200569987

2x 0.0138180907815

4x 0.2379906475543

8x 2.1160101890564

16x 8.2407598495483

ments of the interpolated images by increasing the frequency 2, 4, 8 and 16

original with each interpolator. 

 
 b) 

 
 

 

d) 

Original image (pattern depth), (b) Image with Linear Interpolator (pattern depth)

with Lagrange Interpolator (pattern depth), (d) Image with B-Spline I

5,6 and 7 depict visually how the moments of the scaled images vary more 

frequently with respect to the original moments of the depth image(plush doll).

Table 1. Linear interpolation (plush doll) 

M 2
nd

 M 3
rd

 M 4
th

 M 

0.055920057 4567.730957 106484.9375 76746880 

8058724 4518.415039 111223.5469 75409888 

0.291386068 4520.250488 111087.3047 75139080 

2.15897727 4531.534668 146713.9219 76388360 

8.629109383 4570.442383 1114.875366 72706552 

Table 2. B-Spline interpolation (plush doll) 

M 2
nd

 M 3
rd

 M 4
th

 M 

0.055920057 4567.730957 106484.9375 76746880 

0.01438925 5114.751465 1607.946045 128895192 

0.210121885 5103.547852 28430.24414 129927656 

2.253632307 5101.760254 7790.346191 129600160 

7.980696201 5140.467285 149802.7813 132150752 

 

Table 3.  Lagrange interpolation (plush doll) 

2
nd

 M 3
rd

 M 4
th

0.0559200569987 4567.73095703125 106484.937500000 76746880

0.0138180907815 5374.58984375000 242783.953125000 261666128

0.2379906475543 5420.54345703125 230595.296875000 246231024

2.1160101890564 5416.71679687500 186943.125000000 241594672

8.2407598495483 5457.23486328125 352931.562500000 250968080

 times the 

 

 

(pattern depth), 

Spline Interpolator 

5,6 and 7 depict visually how the moments of the scaled images vary more 

frequently with respect to the original moments of the depth image(plush doll). 

th
 M 

76746880 

261666128 

246231024 

241594672 

250968080 
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Fig. 5. Lineal interpolator   

In Figure 5 it is observed that the linear interpolator for this type of images, offers 

good results, however, when we scale 16x the original data a considerable variation is 

observed for the moment 3. 

 

Fig. 6. B-Spline interpolator 

 

 

Both the B-Spline interpolator and the Lagrange interpolator, from scaling 2x, 

show a noticeable variation with respect to the original data; however, the B-Spline 

interpolator as seen in Figure 6 varies more than the Lagrange interpolator Figure 7 

for moment 3. 

Figures 5, 6 and 7 depict visually how the moments of the scaled images vary more 

frequently with respect to the original moments of the depth image(pattern of depth). 
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Fig. 7. c) Lagrange interpolator 

Table 4. Liner interpolation (pattern of depth) 

 1
st
 M 2

nd
 M 3

rd
 M 4

th
 M 

OI 0.0001281092700 60.22936633 569.4663696 11182.77637 

2x 0.0001294422447 62.19714737 555.3723755 10825.80664 

4x 0.000847409 63.29848484 524.324462890 10410.88477 

8x 0.00371421 65.824699401 763.623840332 13556.16309 

16x 0.047592497 84.282928466 1455.68054199 27358.07422 

Table 5. B-Spline interpolation (pattern of depth) 

 1
st
 M 2

nd
 M 3

rd
 M 4

th
 M 

OI 0.0001281092700082 60.22936630249 569.46636962890 11182.7763 

2x 0.0092535801231861 3264.8283691406 612950.50000000 174173216 

4x 0.0305372662842274 3582.5812988281 626727.62500000 171449104 

8x 0.204221203923225 3606.1777343750 628083.93750000 172152064 

16x 3.49978852272034 3622.1728515625 588958.06250000 163265120 

Table 6. Lagrange interpolation (pattern of depth) 

 1
st
 M 2

nd
 M 3

rd
 M 4

th
 M 

OI 0.0000000 0.0060229 0.0569466 1.1182776 

2x 0.0000000 0.0000562 0.0175613 6.9509043 

4x 0.0000000 0.0000605 0.0165664 6.1430662 

8x 0.0000000 0.0000608 0.0164137 6.1218336 

16x 0.0000000 0.0000609 0.0158865 5.9289088 
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Fig. 8. Lineal interpolator   

 

Fig. 9. B-Spline interpolator 

 

Fig. 10. Lagrange interpolator 
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Fig. 11. Linear Interpolation 

Fig. 12. B-Spline Interpolation 

Fig. 13. Lagrange Interpolation 

M1 M2 M3 M4

1.252432395 3.659700516 5.02728818 7.885060729

1.524917387 3.654256703 5.068531744 7.873274275

1.889672726 3.652817907 5.058930548 7.87180081

1.723817828 3.653564623 5.062984278 7.872366129

M1 M2 M3 M4

-1.252432395 3.659700516 5.02728818 7.885060729

-2.189894425 3.683789617 4.75175115 7.981087726

-1.955890124 3.682649578 4.740365003 7.980698487

-1.671134563 3.683023852 4.740945296 7.979722859

 

 

 

7.885060729

7.873274275

7.87180081

7.872366129

7.885060729

7.981087726

7.980698487

7.979722859
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5 Conclusions  

In this project, we performed a comparison between the variation of the central mo-

ments initials of a depth image against the central moments obtained from a processed 

image using three different interpolation methods. 

Quantitatively it can be observed that there is variation in the central moments of 

the original image given the selected interpolator as seen in Tables 1-6; however, it is 

also observed that it depends on the shape of the object being analyzed. 

As can be seen in Fig. 5.6 and 7 it can be seen that the linear interpolator is the one 

that best fits the original central moments of the image, however, increasing it by 16x 

for the moment 3 is considerably different from the original. 

As observed both the Lagrange interpolator and the B-Spline interpolator are the 

one that presents the greatest variation with respect to the original information as seen 

in Figure 6, 7, 9 and 10. 

Because of this, the image is scaled with a smaller frequency to be able to visualize 

where it begins to move away from the original moments Figure 11, 12, 13, so that 

when processing images of depth from ToF sensors, this is taken into consideration.  
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